This data package was submitted to a development environment for testing purposes only. Use of these data for anything other than testing is strongly discouraged.

This data package is not the most recent revision of a series.  (View Newest Revision)

Data Package Summary    View Full Metadata

  • Herpetofauna and Riparian Microhabitat of Urban and Wildland Reaches Along the Salt River, Arizona
  • Banville, Melanie; Graduate Student; Department of Applied Sciences and Mathematics
  • 2011-05-06
  • Banville, M. 2013. Herpetofauna and Riparian Microhabitat of Urban and Wildland Reaches Along the Salt River, Arizona ver 0. Environmental Data Initiative. https://doi.org/DOI_PLACE_HOLDER (Accessed 2024-11-21).
  • Worldwide, riverine floodplains are among the most endangered landscapes. In response to anthropogenic impacts, riverine restoration projects are considerably increasing. However, there is a paucity of information on how riparian rehabilitation activities impact non-avian wildlife communities. I evaluated herpetofauna abundance, species richness, diversity (i.e., Shannon and Simpson indices), species-specific responses, and riparian microhabitat characteristics along three reaches (i.e., wildland, urban rehabilitated, and urban disturbed) of the Salt River, Arizona. The surrounding uplands of the two urbanized reaches were dominated by the built environment (i.e., Phoenix metropolitan area). I predicted that greater diversity of microhabitat and lower urbanization would promote herpetofauna abundance, richness, and diversity. In 2010, at each reach, I performed herpetofauna visual surveys five times along eight transects (n=24) spanning the riparian zone. I quantified twenty one microhabitat characteristics such as ground substrate, vegetative cover, woody debris, tree stem density, and plant species richness along each transect. Herpetofauna species richness was the greatest along the wildland reach, and the lowest along the urban disturbed reach. The wildland reach had the greatest diversity indices, and diversity indices of the two urban reaches were similar. Abundance of herpetofauna was approximately six times lower along the urban disturbed reach compared to the two other reaches, which had similar abundances. Principal Component Analysis (PCA) reduced microhabitat variables to five factors, and significant differences among reaches were detected. Vegetation structure complexity, vegetation species richness, as well as densities of Prosopis (mesquite), Salix (willow), Populus (cottonwood), and animal burrows had a positive correlation with at least one of the three herpetofauna community parameter quantified (i.e., herpetofauna abundance, species richness, and diversity indices), and had a positive correlation with at least one herpetofauna species. Overall, rehabilitation activities positively influenced herpetofauna abundance and species richness, whereas urbanization negatively influenced herpetofauna diversity indices. Based on herpetofauna/microhabitat correlations established, I developed recommendations regarding microhabitat features that should be created in order to promote herpetofauna when rehabilitating degraded riparian systems. Recommendations are to plant vegetation of different growth habit, provide woody debris, plant Populus, Salix, and Prosopis of various ages and sizes, and to promote small mammal abundance.

  • N: 33.5598      S: 33.42      E: -111.6065      W: -112.0785
  • Copyright Board of Regents, Arizona State University. This information is released to the public and may be used for academic, educational, or commercial purposes subject to the following restrictions: While CAP LTER will make every effort possible to control and document the quality of the data it publishes, the data are made available 'as is'. CAP LTER cannot assume responsibility for damages resulting from mis-use or mis-interpretation of datasets or from errors or omissions that may exist in the data. It is considered a matter of professional ethics to acknowledge the work of other scientists that has resulted in data used in subsequent research. CAP LTER expects that any use of data from this server will be accompanied with the appropriate citations and acknowledgments. CAP LTER encourages users to contact the original investigator responsible for the data that they are accessing. Where appropriate, researchers whose projects are integrally dependent on CAP LTER data are encouraged to consider collaboration and/or co-authorship with original investigators. CAP LTER requests that users submit to the Global Institute of Sustainability, ASU, one copy of any publication resulting from the use of data obtained from this site. CAP LTER requests that users not redistribute data obtained from this site. However, links or references to this site may be freely posted.
  • DOI PLACE HOLDER
  • Analyze this data package using:           

EDI is a collaboration between the University of New Mexico and the University of Wisconsin – Madison, Center for Limnology:

UNM logo UW-M logo